Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Food Funct ; 12(8): 3393-3404, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1201666

ABSTRACT

The global health emergency generated by coronavirus disease-2019 has prompted the search for immunomodulatory agents. There are many potential natural products for drug discovery and development to tackle this disease. One of these candidates is the Ganoderma lucidum fungal immunomodulatory protein (FIP-glu). In the present study, we clarify the influences of N-linked glycans on the improvement of anti-inflammatory activity and the potential mechanisms of action. Four proteins, including FIP-glu (WT) and its mutants N31S, T36N and N31S/T36N, were successfully expressed in P. pastoris, of which T36N and N31S/T36N were glycoproteins. After treatment with peptide-N-glycosidase F, the results of SDS-PAGE and Western blot showed that the glycan moiety was removed completely, indicating that the glycan moiety was N-linked. This was also demonstrated by UPLC-qTOF-MS. The cytotoxicity assay showed that N-linked glycans decreased the cytotoxicity of WT; while, the RT-qPCR assay showed that N-glycosylated WT regulated the mRNA expression of IL-6 and TGF-ß1. The Western blot results showed that N-glycosylated WT reduced the phosphorylation level of p38 MAPK. In conclusion, our findings revealed a novel mechanism by which N-glycosylation of FIP-glu improved its anti-inflammatory activity through the regulation of the expression of inflammatory cytokines in RAW264.7 via inhibition of p38 MAPK phosphorylation. It was proved that N-glycosylation significantly improved the functional properties of FIP-glu, providing theoretical and technical support for expanding the application of FIPs in the food and pharmaceutical industries.


Subject(s)
Fungal Proteins/pharmacology , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Reishi , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Cytokines , Electrophoresis, Polyacrylamide Gel , Glycoproteins/metabolism , Glycosylation , Mass Spectrometry , Mice , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , RAW 264.7 Cells , Real-Time Polymerase Chain Reaction , Saccharomycetales
SELECTION OF CITATIONS
SEARCH DETAIL